
 

TEAM 6 

ArMyo 
 

 

 

 



 

 

1. INTRODUCTION 2 

2. MECHANICAL MODEL 3 
2.1 Shoulder 3 

2.2 Elbow Joint 4 

2.3 Wrist Joint 4 

2.4 Hand 5 

Hand Involving Thumb, Forefinger and Middle Finger 6 

Forefinger Movement 6 

3. EMBEDDED SYSTEMS 8 
3.1 EMG Sensor 8 

3.2 The Computing Unit 10 

3.2.1 RASPBERRY Pi 2 10 

3.2.2 ARDUINO Mega 10 

EMG Data Collection and Communication with Pi: 11 

Controls of the motor 11 

I2C protocol 11 

3.3 ACTUATORS 12 

3.3.1 HIGH TORQUE SERVO MOTOR 12 

3.3.2 LOW TORQUE SERVO MOTOR 12 

3.4 SCHEMATIC AND WORK-FLOW 13 

4. DEEP LEARNING MODEL 14 
4.1 DATA ACQUISITION AND ITS PREPROCESSING 14 

4.2 CONVOLUTIONAL NEURAL NETWORK ARCHITECTURE 15 

4.3 TRAINING PARAMETERS AND HYPERPARAMETERS USED 17 

4.4 RESULTS 17 

5. FUTURE ASPECT 18 
Conductive Fabric Electrodes 18 

Multiplexing The Signals : 18 

6. IMPACT 19 
6.1 BACKGROUND 19 

6.2 CURRENT ISSUES 19 

6.3 PROPOSED ADVANTAGES 20 

ANNEXURE 21 
SPECIFICATIONS 21 

Low Torque Servo Motor 21 

High Torque Servo Motor 21 

Encoder and Driver 21 

Battery 21 

COST ANALYSIS 22 

REFERENCES 22 

1 



 

 

1. INTRODUCTION 
Paralysis is the loss of muscle function in some part of the body. It happens when something                 
goes wrong with the way messages pass between our brain and muscles. Some common              
causes of limb paralysis are: 

1. Stroke: This is the condition in which a person’s brain is unable to communicate properly               
with a muscle resulting from loss of motor control of otherwise functional limbs. A stroke               
can be classified into two categories: 

a. Ischemia: due to lack of blood flow, and 
b. Haemorrhaging, due to internal bleeding 

2. Spinal cord injury: It can cause a disruption of the communication channels between the              
brain and the peripheral nerve endings causing the signals to not go through completely.  

There are about 5.35 million people living with paralysis in the United States alone which               
represents 1.7% of the population. This problem is much more common in lower-income             
households (28% of households with a paralyzed member earn less than $15000 per year). The               
leading cause of paralysis is stroke (33.7%) followed by spinal cord injury (27.3%). 
 
Impairments in reaching movements occur in about two-thirds of stroke survivors: upper limb             
functions are altered in the 73–88% of first-time stroke survivors, and in the 55–75% of chronic                
post-stroke patients. Indeed, in most of the cases post-stroke subjects remain: 
 

● Unable to use their paretic limb to execute even basic actions  
● Losing their independence in carrying out everyday activities. 
● All those have a heavy and long-term financial burden imposed on both families and              

health care systems. 
 

There exists, therefore an emerging need for intelligent and non-intrusive equipment to assist             
and support motion lost by stroke survivors by utilising the limited signals available by the nerve                
endings in the limbs. With the recent advances in robotics, mycobiology and artificial intelligence,              
such solutions are now within our grasp. Our product ​ArMyo aims to tackle the paralysis of the                 
hands and arms by utilizing the weak signals produced in the paralyzed arm muscles to control                
the arm and the hand without the involvement of other parts of the body. 
A robotic exoskeleton system is a noble man-machine intelligent system. It is an orthotic device               
with corresponding joints and links to the human joints and links. The muscle fibres release               
calcium ions when they are excited even when they are weak. These signals can be used to                 
detect the intent for motion and then assist the weak muscles in performing the intended action.                
It is important to develop exoskeleton systems to assist and/or rehabilitate physically weak             
people in the present society in which a considerable percentage of the population is aged and                
physically weak.  
 
Medical devices like our ​ArMyo ​help them hold and move which is highly desirable to improve                
their quality of life. 
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2. MECHANICAL MODEL 

2.1 Shoulder 
 
Mechanically, the objective at the shoulder was to provide a 3-DOF joint with sufficient              
workspace for the movement of the arm. Accordingly, we designed a kinematic model with              
3-DOF for shoulder rotation, shoulder adduction & abduction and shoulder flexion & extension.             
Subsequently, we designed the links for a 3-Revolute DOF serial manipulator system. The             
orientation was done such that the axes of all the 3 Revolute joints was coincident at the point. It                   
provided a joint close to ball-and-socket type joint, which is actually present in the shoulder. Each                
DOF is powered by a servo motor. For the servo motor, we chose a torque rating greater than                  
100 kg-cm, considering the weight of the subject's hand. 
 

 
 
The orientation of the degrees of freedom, as can be seen in the figure, are in the order first                   
shoulder rotation, followed by shoulder adduction & abduction, followed by shoulder flexion &             
extension. All the joints are designed such that they will provide passive freedom in movement               
when the servo motors are not attached. 
 
All the parts are manufactured using ​aluminium to provide sufficient strength as well as possess               
lightweight. 
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2.2 Elbow Joint 
 
The exoskeleton representing the elbow comprises of 2 co-axial revolute joints. The axis of the               
revolute joint has been made coincident with the axis of the hinge joint of the elbow. The revolute                  
joint consists of 2 links and a disc in between with a hole of 6mm diameter. The pin is a standard                     
steel clevis and cotter pin joint. 
 
The pin joint connects the shoulder exoskeleton and the connecting link to the wrist joint. The                
material chosen for the connecting links is 6mm thick Aluminum 6061-T6 plates.  
 
The shaft of a servo motor will be attached to the outer plate (connecting link to the wrist) while                   
its body will be fixed to the upper link, thus imparting the relative rotary motion between the 2                  
links. 

 
2.3 Wrist Joint 
 
The wrist joint consists of two parts. One is fixed to the wrist and the other is fixed to the upper                     
end of the forearm. Our objective is to create a actuate an angular motion between these two                 
parts. A hose clamp is used to fasten the first part to the wrist. Two strings are wound over the                    
clamp to actuate the twisting motion of the wrist. The clamp near the elbow has an extended                 
section up to the wrist. The strings pass over pulleys attached to this extension. One of the                 
strings is connected to a servo motor. When the string is pulled using the motor the string pulls                  
the clamp which results in the rotation of the wrist. During this process, the other string which is                  
wound in the opposite direction is pulled towards the clamp. And extension spring is attached to                
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that string such that the energy is stored during this process. As soon as the torque from the                  
servo motor is withdrawn the spring compresses to its natural length and the wrist twists back to                 
its original position. 
 

 
 

2.4 Hand 
 
The objective of the hand for our exoskeleton is to grasp and hold regular shaped objects firmly.                 
It was observed that the thumb, the forefinger and the middle finger of a hand was sufficient                 
enough to provide force to hold many objects although not very heavy. Accordingly, kinematic              
links for the two fingers and one thumb for each hand was designed. 
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Hand Involving Thumb, Forefinger and Middle Finger 
 
All the joints between the links of the fingers are simple revolute joints and the axis of these                  
revolute joints are superimposed with the respective finger or thumb joints. However, for the last               
joint, it was not feasible to design a revolute joint and superimpose with the axis of the actual                  
finger joint. Hence, we designed a C-shaped slot joint for it. These give the fingers complete                
freedom at every joint. The fore-finger and the middle finger is s 3-DOF system whereas the                
thumb is a 2-DOF system. 
 
A mechanism using strings were used to close all the fingers while holding the objects. The                
mechanism is explained below. 
 

 
 
 
Forefinger Movement  

Unfolded 

 
In the figure shown of the forefinger, a non-elastic string is attached at loop A. The string then                  
passes through loop B and loop C and is finally attached to a servo. Similarly, another elastic                 
string is attached at loop D and is guided through loop E, F, G and H, then finally attached at                    
loop I. The servo pulls the string and the finger gets folded subsequently. At the same time, the                  
string from D to I, being elastic, goes under tension. A Similar movement takes place at the                 
middle finger and the thumb as well. This completes the action of folding the fingers of the hand                  
to hold an object. When the servo releases the string AC, the elastic string DI under tension tries                  
to get back all the links of the finger to the initial straight position. In this way, all the fingers are                     
unfolded. 
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Folded 

 
We have designed the A, B and C loops on both sides of each finger. When strings from both the                    
sides are pulled, it will avoid any lateral movement of the fingers and the thumb. 
All the parts are 3D printed using FDM technique. The material used for all the parts is PLA. 
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3. EMBEDDED SYSTEMS 
The mechanical design of the Powered Exoskeleton incorporates various actuators and motor            
which needs to be controlled properly and precisely, also the device needed to have the               
capability of acquiring and classifying EMG signals. The EMG signal is a biomedical signal that               
measures electrical currents generated in muscles during its contraction representing          
neuromuscular activities. The nervous system always controls muscle activity         
(contraction/relaxation). Hence, the EMG signal is a complicated signal, which is controlled by             
the nervous system and is dependent on the anatomical and physiological properties of             
muscles.EMG detector, particularly if it is at the surface of the skin, collects signals from different                
motor units at a time which may generate interaction of different signals. 

Electrical and electronic peripherals were added to help the Exoskeleton achieve the desired             
action helping the paralytic person to regain control of that lost entity. The complete Embedded               
System is divided into various parts described in detail as subsections below: 
 
 

3.1 EMG Sensor  
 
Measuring muscle activation via electric potential, referred to as electromyography (EMG), has            
traditionally been used for medical research and diagnosis of neuromuscular disorders. However,            
with the advent of ever shrinking yet more powerful microcontrollers and integrated circuits, EMG              
circuits and sensors have found their way into prosthetics, robotics and other control systems.  
Gelled EMG electrodes contain a gelled electrolytic substance as an interface between skin and              
electrodes. Oxidation and reduction reactions take place at the metal electrode junction.            
Silver-silver chloride (Ag-AgCl) is the most common composite for the metallic part of gelled              
electrodes.  
Surface EMG can be recorded by a pair of electrodes or by a more complex array of multiple                  
electrodes. More than one electrode is needed because EMG recordings display the potential             
difference (voltage difference) between two separate electrodes. 
 
 

                 ​   
                                                Available EMG Points on Hand :  
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Working: For each muscle action point, three probes are required for monitoring the signal. One               
of the electrodes is the reference while the other two electrodes are for carrying the signals. 
The signals are in microvolts, which is amplified by the range 0-5V. The amplifier is based on the                  
basic working of the instrumentation amplifier. This amplified signal is then further used as the               
input signal to the Arduino Board. The amplifier also allows adjustable gain, so the user can                
customize as per the signal magnitude. 
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3.2 The Computing Unit  
 
The model houses a Raspberry Pi 2 and an Arduino Mega 2560, which are responsible for                
efficiently operating the model. 

 
3.2.1 RASPBERRY Pi 2 
 
The Raspberry Pi 2 is a credit card sized single-board computer powered by ARM Cortex A7                
processor. It has the following specifications: 

● A 900MHz quad-core 32-bit ARM Cortex-A7​ ​CPU 
● 1GB RAM with 4 USB ports and 40 GPIO pins 
● Full HDMI port 
● Ethernet port 
● Camera interface (CSI) 

These capabilities of the Raspberry Pi 2 play a pivotal role in the working of our device. The Pi is                    
responsible for running the deep convolutional neural network which extracts features from the             
acquired EMG signals. It also shares a strong communication link with the low-level controller -               
Arduino Mega to communicate the real-time information of the desired action to be performed by               
the arm which handles the controls of the motors. 
 
3.2.2 ARDUINO Mega 
 
The Arduino Nano is a small, complete, and breadboard-friendly board based on the             
ATmega328P (Arduino Nano 3.x). It has more or less the same functionality of the Arduino               
Duemilanove but in a different package. There are totally 14 digital Pins and 8 analog pins 1                 
UARTs (hardware serial ports), a 16 MHz crystal oscillator, a Mini-USB connection, an ICSP              
header, and a reset button. 
 
It is used as a low-level controller in the system accomplishing the job of getting the position of                  
different servo motors for a feedback-based control model and driving appropriate signals            
according to inputs received from the Raspberry Pi 3 to the motor drivers which actuate the                
motors. 
It is mainly used to perform the following tasks : 

● Sensor Data Collection 
● Controls of the motors  
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EMG Data Collection and Communication with Pi: 

​The amplified signals from the EMG electrodes are fed into the Arduino mega. Thus this the                 
time-varying signal acts input feature to the Deep Neural Net Classifier in the Pi. This               
communication takes place through the Serial Communication Protocol. 
Serial Communication is further used for transmitting the output of the classifier to the Arduino to                
perform the required action as per the signal. 
 
Controls of the motor  
Four RMCS-2201 High-Torque Encoder DC Servo Motors are controlled using I2C           
communication protocol with the help of Arduino Mega. 
Four High-Torque MG996R Digital Servo motors are controlled using PWM of required Duty             
Cycle with the help of Arduino Mega. 
 
I2C protocol 
I2C protocol is used to control the high torque servo motors. I2c allows all motors to be                 
connected in the same bus unlike protocols like UART ,accomplishing this by ​addressing.​The             
master sends the address of the slave it wants to communicate with to every slave connected to                 
it. Each slave then compares the address sent from the master to its own address. If the address                  
matches, it sends a low voltage ACK bit back to the master. If the address doesn’t match, the                  
slave does nothing and the SDA line remains high. 
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3.3 A​CTUATORS 
 
3.3.1 HIGH TORQUE SERVO MOTOR 
 
This Encoder DC Servo motor solution integrates a 0.2 degree resolution optical encoder and a               
high power electronic servo drive on an Industrial grade high torque dc motor. It supports               
UART/I2C/PPM/Analog signals directly for absolute speed and absolute position control. This           
solution works extremely well for our mechanism which requires slow speed operation and it              
achieves this by providing high correction torque through a closed PI control loop. 

 
 
 
 
3.3.2 LOW TORQUE SERVO MOTOR 
 
Low Torque Standard Servo Motor with Metal Gears is used for the movement of fingers               
supported by the brackets which are 3D printed so that it enables the disabled with the ability to                  
grab any object. 
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3.4 S​CHEMATIC AND​ W​ORK​-F​LOW 

 
 

Final Circuit 
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4. DEEP LEARNING MODEL 
4.1 DATA ACQUISITION AND ITS PREPROCESSING 
 
EMG data is acquired using a muscle sensor module using Arduino Mega. The sensor is               
non-intrusive in nature and reads the potential difference between two nearby points on a              
particular muscle on the human body. When a human being uses a certain body part, a set of                  
muscles are either flexed or relaxed thus resulting in a potential difference building up along               
these muscles. Hence, we aim to capture these potential differences along a set of muscles in                
order to determine the action that a person desires to perform. The extent to which a muscle is                  
involved while performing an action depends on the type of action and the intensity with which                
the action is performed. Hence, we aim to exploit this property in order to develop a human                 
activity classifier which learns to predict the desired action from the time series data of the                
potential differences obtained from a set of muscles. An alternative to this method would be to                
use EEG signals from the brain to detect what action a human is willing to perform. However,                 
since all actions involving arm and elbow movements are controlled by the neural cortex, the               
EEG signals corresponding to these movements would have a similar signature and hence,             
would be difficult to classify. Hence, we have considered using EMG data obtained from a set of                 
muscles to achieve variety in the data, thus enabling us to develop a more robust classification                
paradigm capable of detecting small changes in the desired action. 
 
The data, which is in a time-sampled form, is split into windows, each window containing a fixed                 
number of samples. Then, each window is labelled according to the most prevalent action              
occurring within that window. After that, all the windows are split into three categories - training                
windows, validation windows and testing windows. As the names suggest, the training windows             
are used for training the model, the validation windows are used for validating the model in order                 
to prevent the model from overfitting and the testing windows are used for testing whether the                
network works fine on the remaining part of the data, i.e., test data.  
 
In order to make the data normalised for training, the data is normalized using Z-normalization,               
using the mean window and the standard deviation window of the training windows. If ​𝜇 and ​𝝈 be                  
the mean window and standard deviation window of all the training windows respectively. Then,              
for a given window X, the normalised window X​n​ is :- 
 

X​n​ = (X - 𝜇)/𝝈 
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4.2 CONVOLUTIONAL NEURAL NETWORK ARCHITECTURE 
 
Inspired from the paper on the use of Deep Convolutional Neural Networks for multichannel time               
series data, the network being used here is a Deep Convolutional Neural Network, with fully               
connected layers at the end. 
 
For each arm, the data is obtained from four sensors placed at four distinct locations. The                
sensors are placed such that the signature of the EMG signal obtained from each sensor is                
minimally correlated with that obtained from other signals. Hence, a four-channel data is obtained              
from the sensors which are passed to a CNN based classification model in order to predict the                 
desired action. 
 
The input window of the network is such that, each row is the part of a time series belonging to                    
an electrode, while the columns represent sampled data acquired from the EMG sensors. In              
order to learn the basic data representation firstly, the network’s initial framework is such that the                
variation of data over time is learnt by using one-dimensional filters that convolve along the time                
axis. Each Convolutional filter is followed by a max pooling kernel, which aids in `spatial               
invariance’, considering each window as an image. Also, in between, there are some Dropout              
layers which provide a form of regularization and help in reducing overfitting. After having learnt               
the vector representation of each of the electrodes, in order to learn the correlation between the                
electrodes, the individual electrode representations are concatenated. Finally, the last layer,           
which has as many neurons as there are classes, consists of a softmax[2] activation function and                
is fully connected to the previous layer. Each neuron’s value in the final layer gives the probability                 
of the input window belonging to that particular class. The flowchart of the network is depicted in                 
the following figure :- 
 

GIVE THE SAME FIGURE AS LAST TIME 

 
Flowchart of the Network 

 
 
(Here, 𝝈 represents the softmax function, 𝑥j being the neuron on which the activation function is                
being applied, and 𝑥i being any general neuron belonging to the layer on which the function is                 
applied.) 
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The following table depicts the sizes and the number of trainable parameters of the network - 
---------------------------------------------------------------------------------------------------------------- 
        Layer (type)               Output Shape         Param # 
================================================================ 
            Conv2d-1            [-1, 64, 4, 26]             384 
       BatchNorm2d-2            [-1, 64, 4, 26]             128 
              ReLU-3            [-1, 64, 4, 26]               0 
         Dropout2d-4            [-1, 64, 4, 26]               0 
         MaxPool2d-5            [-1, 64, 4, 13]               0 
            Conv2d-6            [-1, 128, 4, 9]          41,088 
       BatchNorm2d-7            [-1, 128, 4, 9]             256 
              ReLU-8            [-1, 128, 4, 9]               0 
         Dropout2d-9            [-1, 128, 4, 9]               0 
        MaxPool2d-10            [-1, 128, 4, 4]               0 
AdaptiveAvgPool2d-11            [-1, 128, 1, 1]               0 
           Linear-12                  [-1, 512]          66,048 
      BatchNorm1d-13                  [-1, 512]           1,024 
             ReLU-14                  [-1, 512]               0 
          Dropout-15                  [-1, 512]               0 
           Linear-16                    [-1, 9]           4,104 
          Softmax-17                    [-1, 9]               0 
================================================================ 
Total params: 113,032 
Trainable params: 113,032 
Non-trainable params: 0 
---------------------------------------------------------------- 
Input size (MB): 0.00 
Forward/backward pass size (MB): 0.40 
Params size (MB): 0.43 
Estimated Total Size (MB): 0.83 
---------------------------------------------------------------- 
 
Thus, the network learns both the temporal aspect of the data, as well as, the extent to which the                   
sensors under consideration are interdependent on each other, thus giving a very powerful             
learning model. 
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4.3 TRAINING PARAMETERS AND HYPERPARAMETERS USED 
 
Training parameters, such as the number of training epochs, batch size etc. and 
hyperparameters, such as learning rate, dropout etc. for a model are the most crucial parameters 
for the network to perform at its best potential. For the present model, the various training 
parameters and hyperparameters being used are as follows - 
 
● Window Length =30 samples 
● Learning rate = 0.001 decayed by 10 every 300 epochs 
● Dropout rate for convolutional and fully connected layers= 0.2 
● Number of epochs = 1000 
● Batch size = 8 
 

 
4.4 RESULTS 
Labelled data (divided into 9 classes - one of them corresponding to no movement, and other                
eight classes being the eight kinds of actions) of a certain duration is used for training, validation                 
and testing. The data, consisting of 259 windows, is split between train, validation and test data                
in the ratio of 7:2:1 in a stratified fashion. The network trained, validated and tested using this                 
data and the above-mentioned parameters and hyperparameters give a training accuracy of            
100%, a validation accuracy of 95% and a test accuracy of about 90%. 
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5. FUTURE ASPECT 

Conductive Fabric Electrodes 

 

Conductive fabric electrodes are a low cost and simple way to make reusable electrodes for               
sensing muscle activity. They can be sewn into any type of garment or used with a strap. When                  
dampened, these electrodes allow you to sense the tiny electrical signals of your muscles just               
like traditional medical electrodes. For this tutorial, we're going to use them in a sleeve to detect                 
the muscle activity of the forearm muscles. 

Benefits of the conductive fabric electrodes over traditional EMG electrodes: 

● Reusable - traditional EMG electrodes are meant to be used only once and then thrown               
out. Conductive fabric electrodes can be used over and over again simply by applying              
some water before use. 

● No adhesive - traditional EMG electrodes use adhesives to stick to your skin. This              
adhesive can be somewhat of a pain to remove after use and can cause skin irritation to                 
some people. 

Multiplexing The Signals : 
Using low noise 16:1 multiplexer, a single sensor will suffice to collect the EMG signal data from                 
16 different muscle points. Thus using 2x 16:1 multiplexer, the arms require only 1              
amplifier/sensor and can switch between 16 channels. Thus there will be a significant cost              
reduction of the model. 
 
From using dedicated sensors for each channel to using multiplexer, the reduction in cost will be                
around = ((Sensor Cost) x (16n-1) - 2n.(cost of multiplexer)) (for 16:1 channel analog multiplexer,               
where n is the number of such multiplexers are used). In our case, this value will be Rs. 29,000. 
We experimented with the same during our testing, but due to noise in the hand fabricated circuit                 
the results were not appreciable. This problem can be overcome by Industrial fabrication and              
using low noise multiplexer. 
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6. IMPACT 

6.1 BACKGROUND 

 

In 2010, 8.2 million people in Europe were affected by a stroke, with a total cost of about 64                   
billion euro per year. The number of patients paralysed due to stroke, spinal cord injury (SCI),                
post-polio, or other related diseases in orthopaedics is increasing. The induced paralysis puts             
these people at an increased risk of secondary complications, such as osteoporosis, muscle             
atrophy, diabetes, insulin resistance, and pressure ulcers. 
Stroke is a serious condition associated with a high mortality rate and severe disability. Social               
functions, such as self-management and communication, are generally reduced in stroke           
patients, and many reports showed results of poor quality of life (QOL). Several studies have               
found that poor daily function decreases QOL and satisfaction levels in stroke patients; and it is                
noted that improving QOL was the primary objective of rehabilitation in stroke patients.             
Impairments in reaching movements occur in about two-thirds of stroke survivors:  
 
Upper limb functions are altered in the 73–88 % of first-time stroke survivors, and in the 55–75 %                  
of chronic post-stroke patients. Indeed, in most of the cases post-stroke subjects remain: 

● Unable to use their paretic limb to execute even basic actions  
● Losing their independence in carrying out the everyday activities. All those have a heavy              

and long-term financial burden imposed on both families and health care systems. Thus,             
medical devices like our ​ArMyo can help them hold and move which are highly desirable               
to improve their quality of life. 

 

 
6.2 CURRENT ISSUES  
 
The traditional mechanical Exo arms are abandoned by most of the paralyzed patients due to the                
unnatural and metabolically expensive movements required during the use of heavy actuators,            
such as lateral sway of the upper body, hip elevation in the swing phase. In addition, for some                  
paralyzed patients without sufficient body strength, these arms cannot provide enough           
assistance and are not suitable. Any additional gear one puts on to compensate for the lack of                 
movement, have to deal with these general problems:- 

1. Intact Limb Pain 
2. Back Pain 
3. Poor Balance, Instability 
4. General Fatigue and Reduced Mobility 
5. Irritation and Skin Issues 
6. Socket Issues or Discomfort  

To tackle the above-mentioned problems which a normal person have to go through, we have               
certain features in our ​ArMyo​ which are explained below. 
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6.3 PROPOSED ADVANTAGES 
  
Our ​ArMyo ​has multiple mounting points with which we attach the exo-arm to the user’s body.                
This ensures that the overall load is not concentrated in a specific region which might be                
detrimental to the user in future. Additionally, just enough padding is provided on necessary              
regions of mounting so that the user does not have any comfort issues and irritation while using                 
the ​ArMyo​. We have used lightweight materials (like Aluminum, Wood, Acrylic and etc) so that               
the weight of ​ArMyo ​is kept minimum while still maintaining the minimum required structural              
rigidity. This is done to ensure that, the user can use our ​ArMyo ​for the longest possible time and                   
does not have to deal with unnecessary fatigue and reduced mobility. Our LCD current similar               
products are very work specific, which means they cannot be used for multiple purposes which is                
because of less number of degree of freedom they provide to the user. On the other hand, our                  
ArMyo has almost all the degrees of freedom which a normal human being’s arm has. Thus it                 
can be used for the multiple purposes giving the user more freedom. 

 
Various uses for such a device which uses signals from a person’s muscles to support and assist                 
in the motion of limbs are possible: 

1. This device is excellent for people suffering from muscle fatigue and is in therapy for               
regaining muscle strength. This device can artificially induce certain movement in           
muscles with little to no effort on the side of the user. 

2. This device can also be used by people in the early stages of ALS by maintaining muscle                 
movement even when their nerves undergo deterioration.  
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ANNEXURE 

SPECIFICATIONS 

 

❏ Low Torque Servo Motor 
❏ Operating Voltage: 4.8-7.2 Volts (Peak to Peak Square Wave) 
❏ Operating Temperature Range: -10 to +60 Degree C 
❏ Operating Speed (4.8V): 0.18sec/60 degrees at no load 
❏ Stall Torque (4.8V): 11 kg/cm 
❏ Dimensions: 1.6" x 0.8"x 1.4" (41 x 20 x 36mm) 
❏ Weight: 56gm 

❏ High Torque Servo Motor 
❏ 10RPM 12V DC Servo motors with Metal Gearbox and Gears 
❏ 18000 RPM base motor 
❏ Diameter: Gearbox - 37mm , Motor- 28.5 mm 
❏ Length: Motor and Shaft 63mm + 15mm 
❏ Weight: 350gm 
❏ 120 kg-cm torque 
❏ No-load current = 800mA, Load current = up to 7.5 A(Max) 

❏ Encoder and Driver 
❏ 0.2deg resolution optical encoder integrated on the motor output shaft 
❏ Absolute (32bit) Motor position control interface via UART, I2C, PPM signal or 

analog input 
❏ Speed and position can be controlled using a terminal or MCU via simple UART 

commands applied. 
❏ Battery 

❏ Battery: Internal Lithium Polymer battery 480mAh 
❏ Battery life: up to 12 hours using proprietary wireless, up to 6 hours using 

Bluetooth® Smart 
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COST ANALYSIS 

 

Component  Price 

Materials cost  3000 

Manufacturing cost  8000 

EMG Sensors  8 x 2000 

High Torque Servo Motors  4 x 2500 

Low torque servo motor  4 x 300 

Raspberry Pi 2  2500 

Arduino Mega  600 

LiPo Battery  1500 

Total  39800 

 
*for both the hands 
**for single hand cost will be below 25000 INR 
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